If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2-8v-6=0
a = 2; b = -8; c = -6;
Δ = b2-4ac
Δ = -82-4·2·(-6)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{7}}{2*2}=\frac{8-4\sqrt{7}}{4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{7}}{2*2}=\frac{8+4\sqrt{7}}{4} $
| 15y-6=4y+8 | | 3^(2-x)=27^(x-2) | | 3^2-x=27^x-2 | | x^2-x+1=28 | | 4n+4=2n+17 | | 6x2=(3x2)x= | | 168^2+374^2=c^2 | | 391^2+120^2=c^2 | | 32+23x=180 | | 286.65^2+317.52^2=c^2 | | 125^2+300^2=c^2 | | 336^2+190^2=c^2 | | 461^2+229.84^2=c^ | | (2.5^(x+1))=15.625 | | (2.5^(x+1))-5=10.625 | | (7x-17)=(7x+1) | | (8x+1)=(x+26) | | (4x+8)=(2x+10) | | (x-2)+(x-14)=180 | | 5x+11=3x+30 | | 18=-15+3x | | 3h=-7+4h | | x+15=5*x-25 | | 17x+10+10x+10=70 | | 9+-4g=11.4 | | 10w+8=-1 | | (8+14)x10=(8x10)+(14x10) | | 7x+7=10-26 | | 1000000225411265x+1111144555751307838=1 | | 11x/48+5x/40=2375 | | 100=225-u | | -u+36=172 |